Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691100

RESUMEN

PURPOSE: Radiation-mediated immune suppression limits efficacy and is a barrier in cancer therapy. Radiation induces negative regulators of tumor immunity including regulatory T cells (Treg). Mechanisms underlying Treg infiltration after radiotherapy (RT) are poorly defined. Given that dendritic cells (cDC) maintain Treg we sought to identify and target cDC signaling to block Treg infiltration after radiation. EXPERIMENTAL DESIGN: Transcriptomics and high dimensional flow cytometry revealed changes in murine tumor cDC that not only mediate Treg infiltration after RT, but associate with worse survival in human cancer datasets. Antibodies perturbing a cDC-CCL22-Treg axis were tested in syngeneic murine tumors. A prototype interferon-anti-epidermal growth factor receptor fusion protein (αEGFR-IFNα) was examined to block Treg infiltration and promote a CD8+ T cell response after RT. RESULTS: Radiation expands a population of mature cDC1 enriched in immunoregulatory markers that mediates Treg infiltration via the Treg-recruiting chemokine CCL22. Blocking CCL22 or Treg depletion both enhanced RT efficacy. αEGFR-IFNα blocked cDC1 CCL22 production while simultaneously inducing an antitumor CD8+ T cell response to enhance RT efficacy in multiple EGFR-expressing murine tumor models, including following systemic administration. CONCLUSIONS: We identify a previously unappreciated cDC mechanism mediating Treg tumor infiltration after RT. Our findings suggest blocking the cDC1-CCL22-Treg axis augments RT efficacy. αEGFR-IFNα added to RT provided robust antitumor responses better than systemic free interferon administration, and may overcome clinical limitations to interferon therapy. Our findings highlight the complex behavior of cDC after RT and provide novel therapeutic strategies for overcoming RT-driven immunosuppression to improve RT efficacy.

2.
Clin Cancer Res ; 30(9): 1945-1958, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427437

RESUMEN

PURPOSE: Radiotherapy (RT) is a widely employed anticancer treatment. Emerging evidence suggests that RT can elicit both tumor-inhibiting and tumor-promoting immune effects. The purpose of this study is to investigate immune suppressive factors of radiotherapy. EXPERIMENTAL DESIGN: We used a heterologous two-tumor model in which adaptive concomitant immunity was eliminated. RESULTS: Through analysis of PD-L1 expression and myeloid-derived suppressor cells (MDSC) frequencies using patient peripheral blood mononuclear cells and murine two-tumor and metastasis models, we report that local irradiation can induce a systemic increase in MDSC, as well as PD-L1 expression on dendritic cells and myeloid cells, and thereby increase the potential for metastatic dissemination in distal, nonirradiated tissue. In a mouse model using two distinct tumors, we found that PD-L1 induction by ionizing radiation was dependent on elevated chemokine CXCL10 signaling. Inhibiting PD-L1 or MDSC can potentially abrogate RT-induced metastasis and improve clinical outcomes for patients receiving RT. CONCLUSIONS: Blockade of PD-L1/CXCL10 axis or MDSC infiltration during irradiation can enhance abscopal tumor control and reduce metastasis.


Asunto(s)
Antígeno B7-H1 , Células Supresoras de Origen Mieloide , Animales , Antígeno B7-H1/metabolismo , Ratones , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Humanos , Metástasis de la Neoplasia , Línea Celular Tumoral , Femenino , Modelos Animales de Enfermedad , Quimiocina CXCL10/metabolismo
3.
J Clin Invest ; 133(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099498

RESUMEN

Activation of TGF-ß signaling serves as an extrinsic resistance mechanism that limits the potential for radiotherapy. Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) antagonizes TGF-ß signaling and is implicated in cancer progression. However, the molecular mechanisms of BAMBI regulation in immune cells and its impact on antitumor immunity after radiation have not been established. Here, we show that ionizing radiation (IR) specifically reduces BAMBI expression in immunosuppressive myeloid-derived suppressor cells (MDSCs) in both murine models and humans. Mechanistically, YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) directly binds and degrades Bambi transcripts in an N6-methyladenosine-dependent (m6A-dependent) manner, and this relies on NF-κB signaling. BAMBI suppresses the tumor-infiltrating capacity and suppression function of MDSCs via inhibiting TGF-ß signaling. Adeno-associated viral delivery of Bambi (AAV-Bambi) to the tumor microenvironment boosts the antitumor effects of radiotherapy and radioimmunotherapy combinations. Intriguingly, combination of AAV-Bambi and IR not only improves local tumor control, but also suppresses distant metastasis, further supporting its clinical translation potential. Our findings uncover a surprising role of BAMBI in myeloid cells, unveiling a potential therapeutic strategy for overcoming extrinsic radioresistance.


Asunto(s)
Neoplasias , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Proteínas de la Membrana/metabolismo , Neoplasias/genética , Neoplasias/radioterapia , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
4.
Cancer Cell ; 41(7): 1294-1308.e8, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37236197

RESUMEN

RNA N6-methyladenosine (m6A) modification is implicated in cancer progression. However, the impact of m6A on the antitumor effects of radiotherapy and the related mechanisms are unknown. Here we show that ionizing radiation (IR) induces immunosuppressive myeloid-derived suppressor cell (MDSC) expansion and YTHDF2 expression in both murine models and humans. Following IR, loss of Ythdf2 in myeloid cells augments antitumor immunity and overcomes tumor radioresistance by altering MDSC differentiation and inhibiting MDSC infiltration and suppressive function. The remodeling of the landscape of MDSC populations by local IR is reversed by Ythdf2 deficiency. IR-induced YTHDF2 expression relies on NF-κB signaling; YTHDF2 in turn leads to NF-κB activation by directly binding and degrading transcripts encoding negative regulators of NF-κB signaling, resulting in an IR-YTHDF2-NF-κB circuit. Pharmacological inhibition of YTHDF2 overcomes MDSC-induced immunosuppression and improves combined IR and/or anti-PD-L1 treatment. Thus, YTHDF2 is a promising target to improve radiotherapy (RT) and RT/immunotherapy combinations.


Asunto(s)
FN-kappa B , Neoplasias , Animales , Humanos , Ratones , Regulación de la Expresión Génica , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/radioterapia , FN-kappa B/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
5.
Nat Nanotechnol ; 17(12): 1322-1331, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36302963

RESUMEN

The clinical utility of stimulator of interferon genes (STING) agonists has been limited due to poor tumour-targeting and unwanted toxicity following systemic delivery. Here we describe a robust tumour-targeted STING agonist, ZnCDA, formed by the encapsulation of bacterial-derived cyclic dimeric adenosine monophosphate (CDA) in nanoscale coordination polymers. Intravenously injected ZnCDA prolongs CDA circulation and efficiently targets tumours, mediating robust anti-tumour effects in a diverse set of preclinical cancer models at a single dose. Our findings reveal that ZnCDA enhances tumour accumulation by disrupting endothelial cells in the tumour vasculature. ZnCDA preferentially targets tumour-associated macrophages to modulate antigen processing and presentation and subsequent priming of an anti-tumour T-cell response. ZnCDA reinvigorates the anti-tumour activity of both radiotherapy and immune checkpoint inhibitors in immunologically 'cold' pancreatic and glioma tumour models, offering a promising combination strategy for the treatment of intractable human cancers.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , AMP Cíclico , Macrófagos Asociados a Tumores , Zinc/farmacología , Células Endoteliales , Proteínas de la Membrana , Neoplasias/tratamiento farmacológico , Nanopartículas/uso terapéutico , Adenosina Monofosfato
6.
Gut ; 71(3): 521-533, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-33685966

RESUMEN

OBJECTIVE: Our goals were to evaluate the antitumour efficacy of Lactobacillus rhamnosus GG (LGG) in combination with immune checkpoint blockade (ICB) immunotherapies on tumour growth and to investigate the underlying mechanisms. DESIGN: We used murine models of colorectal cancer and melanoma to evaluate whether oral administration of LGG improves the efficacy of ICB therapies. We performed the whole genome shotgun metagenome sequencing of intestinal contents and RNA sequencing of dendritic cells (DCs). In a series of in vitro and in vivo experiments, we further defined the immunological and molecular mechanisms of LGG-mediated antitumour immunity. RESULTS: We demonstrate that oral administration of live LGG augmented the antitumour activity of anti-programmed cell death 1 (PD-1) immunotherapy by increasing tumour-infiltrating DCs and T cells. Moreover, the combination treatment shifted the gut microbial community towards enrichment in Lactobacillus murinus and Bacteroides uniformis, that are known to increase DC activation and CD8+tumour recruitment. Mechanistically, treatment with live LGG alone or in combination with anti-PD-1 antibody triggered type I interferon (IFN) production in DCs, enhancing the cross-priming of antitumour CD8+ T cells. In DCs, cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) was required for IFN-ß induction in response to LGG, as evidenced by the significant decrease in IFN-ß levels in cGAS or STING-deficient DCs. LGG induces IFN-ß production via the cGAS/STING/TANK binding kinase 1/interferon regulatory factor 7 axis in DCs. CONCLUSION: Our findings have offered valuable insight into the molecular mechanisms of live LGG-mediated antitumour immunity and establish an empirical basis for developing oral administration of live LGG as a combination agent with ICB for cancer therapies.


Asunto(s)
Neoplasias Colorrectales/terapia , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Lacticaseibacillus rhamnosus , Melanoma/terapia , Probióticos/uso terapéutico , Administración Oral , Animales , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Interferón Tipo I/metabolismo , Melanoma/etiología , Melanoma/patología , Ratones
7.
Sci Immunol ; 6(60)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723044

RESUMEN

Radiotherapy (RT) is an important anti-cancer treatment modality that activates innate and adaptive immune responses. When all-trans retinoic acid (RA) was administered with radiation, we observed superior antitumor responses compared to ionizing radiation (IR) alone or RA alone. The superior antitumor effects of combination treatment were accompanied by a dramatic increase of TNF-α- and inducible nitric oxide synthase (iNOS)-producing inflammatory macrophages in local and distal non-irradiated (distal) tumors. Inflammatory macrophages are essential for the therapeutic efficacy of combination treatment by inducing effector T cell infiltration and enhancing the effector T cell to regulatory T cell ratio in local and distal tumors. T cells and T cell-derived IFN-γ are crucial for increasing inflammatory macrophage levels in IR and RA treated tumors. Notably, whereas CD8+ T cells are required for the antitumor response to IR, CD4+ T cells are required for the effectiveness of the IR and RA combination. Combination treatment with RA enhanced the abscopal response when radiation and PD-L1 blockade were used together. The synergistic positive feedback loop of inflammatory macrophages and adaptive immunity is required for the antitumor efficacy of IR plus RA combination treatment. Our findings provide a translational and relatively nontoxic strategy for enhancing the local and systemic antitumor effects of IR.


Asunto(s)
Quimioradioterapia/métodos , Macrófagos/efectos de los fármacos , Neoplasias/terapia , Tretinoina/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de la radiación , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de la radiación , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Macrófagos/inmunología , Ratones , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/patología , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/inmunología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Tretinoina/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación
8.
Biomacromolecules ; 22(9): 3746-3755, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34319087

RESUMEN

Dendron micelles have shown promising results as a multifunctional delivery system, owing to their unique molecular architecture. Herein, we have prepared a novel poly(amidoamine) (PAMAM) dendron-lipid hybrid nanoparticle (DLNP) as a nanocarrier for drug/gene co-delivery and examined how the dendron generation of DLNPs impacts their cargo-carrying capabilities. DLNPs, formed by a thin-layer hydration method, were internally loaded with chemo-drugs and externally complexed with plasmids. Compared to generation 2 dendron DLNP (D2LNPs), D3LNPs demonstrated a higher drug encapsulation efficiency (31% vs 87%) and better gene complexation (minimal N/P ratio of 20:1 vs 5:1 for complexation) due to their smaller micellar aggregation number and higher charge density, respectively. Furthermore, D3LNPs were able to avoid endocytosis and subsequent lysosomal degradation and demonstrated a higher cellular uptake than D2LNPs. As a result, D3LNPs exhibited significantly enhanced antitumor and gene transfection efficacy in comparison to D2LNPs. These findings provide design cues for engineering multifunctional dendron-based nanotherapeutic systems for effective combination cancer treatment.


Asunto(s)
Dendrímeros , Nanopartículas , ADN/genética , Sistemas de Liberación de Medicamentos , Lípidos , Micelas , Transfección
9.
Sci Transl Med ; 13(582)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627484

RESUMEN

Tumor-induced CD45-Ter119+CD71+ erythroid progenitor cells, termed "Ter cells," promote tumor progression by secreting artemin (ARTN), a neurotrophic peptide that activates REarranged during Transfection (RET) signaling. We demonstrate that both local tumor ionizing radiation (IR) and anti-programmed death ligand 1 (PD-L1) treatment decreased tumor-induced Ter cell abundance in the mouse spleen and ARTN secretion outside the irradiation field in an interferon- and CD8+ T cell-dependent manner. Recombinant erythropoietin promoted resistance to radiotherapy or anti-PD-L1 therapies by restoring Ter cell numbers and serum ARTN concentration. Blockade of ARTN or potential ARTN signaling partners, or depletion of Ter cells augmented the antitumor effects of both IR and anti-PD-L1 therapies in mice. Analysis of samples from patients who received radioimmunotherapy demonstrated that IR-mediated reduction of Ter cells, ARTN, and GFRα3, an ARTN signaling partner, were each associated with tumor regression. Patients with melanoma who received immunotherapy exhibited favorable outcomes associated with decreased expression of GFRα3. These findings demonstrate an out-of-field, or "abscopal," effect mediated by adaptive immunity, which is induced during local tumor irradiation. This effect, in turn, governs the therapeutic effects of radiation and immunotherapy. Therefore, our results identify multiple targets to potentially improve outcomes after radiotherapy and immunotherapy.


Asunto(s)
Células Precursoras Eritroides , Neoplasias , Inmunidad Adaptativa , Animales , Humanos , Inmunoterapia , Ratones , Proteínas del Tejido Nervioso
10.
Nanomedicine ; 21: 102059, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31310808

RESUMEN

Ultrasmall nanoparticles (NPs, <10 nm) have promise in cancer treatment, yet little is known about how NP physical properties influence penetration through solid tumors. To elucidate the role of NP size and structure, we prepared a series of sub-10 nm poly(amidoamine) (PAMAM) dendrimers and gold NPs (AuNP), and evaluated penetration in multicellular tumor spheroids (MCTS). Smaller generation 2 dendrimers (G2-NH2, 2.9 nm diameter) penetrated 2.5-fold deeper than larger G7-NH2 (8.1 nm) (P = 0.0005). Despite increased accumulation within MCTS, electrostatic cell interactions and ligand (folic acid, FA)-mediated targeting had minimal influence on penetration. NP rigidity played a minor role in penetration, with smaller rigid AuNP (2 nm) penetrating significantly more than larger AuNP (4 nm) (3-fold, P = 0.014; G2-NH2 vs. G4-NH2, 2.8-fold, P = 0.033). Our findings highlight the importance of rational NP design and provide design cues for tailored NP distributions within solid tumors.


Asunto(s)
Dendrímeros , Sistemas de Liberación de Medicamentos , Oro , Nanopartículas del Metal , Neoplasias , Esferoides Celulares , Dendrímeros/química , Dendrímeros/farmacocinética , Dendrímeros/farmacología , Oro/química , Oro/farmacocinética , Oro/farmacología , Humanos , Células MCF-7 , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Esferoides Celulares/metabolismo , Esferoides Celulares/patología
11.
Artículo en Inglés | MEDLINE | ID: mdl-27126551

RESUMEN

Advances in nanotechnology have had profound impacts on therapeutic delivery, leading to the development of nanomaterials engineered with large carrying capabilities and targeting functionalities. Among the nanomaterials, dendrimers have garnered particular attention from researchers owing to their well-defined structure, near-monodispersity, and ease of multifunctionalization. As hyperbranched, three-dimensional macromolecules, dendrimers can be engineered to target and deliver a wide range of therapeutic agents, including small molecules, peptides, and genes, reducing their systemic toxicities and enhancing efficacies. In this review, we provide a comprehensive overview of the commonly employed dendrimer-based nanocarrier designs, including dendrimer conjugates, Janus dendrimers, and linear-dendritic block copolymers. The discussion will progress through the basic synthetic strategies of dendrimer-based nanocarriers, followed by the potential clinical applications related to their unique structural properties. Finally, the major challenges that these nanocarriers are currently facing in their clinical translation and possible solutions to address these issues will be discussed, with the aim to provide researchers in the drug delivery field a good understanding of the potential utilities of dendrimer-based nanocarriers. WIREs Nanomed Nanobiotechnol 2017, 9:e1409. doi: 10.1002/wnan.1409 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Dendrímeros , Sistemas de Liberación de Medicamentos , Nanopartículas , Nanotecnología
12.
Curr Top Med Chem ; 17(13): 1542-1554, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28017148

RESUMEN

Dendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted.


Asunto(s)
Dendrímeros/química , Técnicas y Procedimientos Diagnósticos , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Nanoestructuras/química , Animales , Humanos , Estructura Molecular , Propiedades de Superficie
13.
Cancer Res ; 76(15): 4470-80, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27280396

RESUMEN

Acute myeloid leukemia (AML) is a common and fatal form of hematopoietic malignancy. Overexpression and/or mutations of FLT3 have been shown to occur in the majority of cases of AML. Our analysis of a large-scale AML patient cohort (N = 562) indicates that FLT3 is particularly highly expressed in some subtypes of AML, such as AML with t(11q23)/MLL-rearrangements or FLT3-ITD. Such AML subtypes are known to be associated with unfavorable prognosis. To treat FLT3-overexpressing AML, we developed a novel targeted nanoparticle system: FLT3 ligand (FLT3L)-conjugated G7 poly(amidoamine) (PAMAM) nanosized dendriplex encapsulating miR-150, a pivotal tumor suppressor and negative regulator of FLT3 We show that the FLT3L-guided miR-150 nanoparticles selectively and efficiently target FLT3-overexpressing AML cells and significantly inhibit viability/growth and promote apoptosis of the AML cells. Our proof-of-concept animal model studies demonstrate that the FLT3L-guided miR-150 nanoparticles tend to concentrate in bone marrow, and significantly inhibit progression of FLT3-overexpressing AML in vivo, while exhibiting no obvious side effects on normal hematopoiesis. Collectively, we have developed a novel targeted therapeutic strategy, using FLT3L-guided miR-150-based nanoparticles, to treat FLT3-overexpressing AML with high efficacy and minimal side effects. Cancer Res; 76(15); 4470-80. ©2016 AACR.


Asunto(s)
Leucemia Mieloide Aguda/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Animales , Humanos , Ratones , Mutación , Nanopartículas
14.
Nat Commun ; 7: 11452, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27116251

RESUMEN

MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Genes Supresores de Tumor , Leucemia Mieloide/genética , MicroARNs/genética , Enfermedad Aguda , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo , Epigénesis Genética , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Leucemia Mieloide/tratamiento farmacológico , Leucemia Mieloide/patología , Ratones Endogámicos C57BL , MicroARNs/química , MicroARNs/uso terapéutico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Transducción de Señal/genética
15.
Mol Pharm ; 13(7): 2155-63, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-26828309

RESUMEN

An enormous effort has been put into designing nanoparticles (NPs) with controlled biodistributions, prolonged plasma circulation times, and/or enhanced tissue targeting. However, little is known about how to design NPs with precise distributions in the target tissues. In particular, understanding NP tumor penetration and accumulation characteristics is crucial to maximizing the therapeutic potential of drug molecules carried by the NPs. In this study, we employed poly(amidoamine) (PAMAM) dendrimers, given their well-controlled size (<10 nm) and surface charge, to understand how the physical properties of NPs govern their tumor accumulation and penetration behaviors. We demonstrate for the first time that the size and surface charge of PAMAM dendrimers control their distributions in both a 3D multicellular tumor spheroid (MCTS) model and a separate extracellular matrix (ECM) model, which mimics the tumor microenvironment. Smaller PAMAM dendrimers not only diffused more rapidly in the ECM model but also efficiently penetrated to the MCTS core compared to their larger counterparts. Furthermore, cationic, amine-terminated PAMAM dendrimers exhibited the greatest accumulation in MCTS compared to either charge-neutral or anionic dendrimers. Our findings indicate that the size and surface charge of PAMAM dendrimers may tailor their tumor accumulation and penetration behaviors. These results suggest that controlled tumor accumulation and distinct intratumoral distributions can be achieved by simply controlling the size and surface charge of dendrimers, which may also be applicable for other similarly sized NPs.


Asunto(s)
Dendrímeros/administración & dosificación , Dendrímeros/química , Neoplasias/tratamiento farmacológico , Poliaminas/administración & dosificación , Poliaminas/química , Esferoides Celulares/química , Cationes/química , Línea Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Células KB , Células MCF-7 , Tamaño de la Partícula
16.
J Drug Target ; 23(7-8): 642-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26453160

RESUMEN

Nanoparticles have shown great promise in the treatment of cancer, with a demonstrated potential in targeted drug delivery. Among a myriad of nanocarriers that have been recently developed, dendrimers have attracted a great deal of scientific interests due to their unique chemical and structural properties that allow for precise engineering of their characteristics. Despite this, the clinical translation of dendrimers has been hindered due to their drawbacks, such as scale-up issues, rapid systemic elimination, inefficient tumor accumulation and limited drug loading. In order to overcome these limitations, a series of reengineered dendrimers have been recently introduced using various approaches, including: (i) modifications of structure and surfaces; (ii) integration with linear polymers and (iii) hybridization with other types of nanocarriers. Chemical modifications and surface engineering have tailored dendrimers to improve their pharmacokinetics and tissue permeation. Copolymerization of dendritic polymers with linear polymers has resulted in various amphiphilic copolymers with self-assembly capabilities and improved drug loading efficiencies. Hybridization with other nanocarriers integrates advantageous characteristics of both systems, which includes prolonged plasma circulation times and enhanced tumor targeting. This review provides a comprehensive summary of the newly emerging drug delivery systems that involve reengineering of dendrimers in an effort to precisely control their nano-bio interactions, mitigating their inherent weaknesses.


Asunto(s)
Dendrímeros/química , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Diseño de Fármacos , Humanos , Nanopartículas , Neoplasias/patología , Polímeros/química , Distribución Tisular
17.
Biomater Sci ; 3(7): 1025-34, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26221937

RESUMEN

Since they were first synthesized over 30 years ago, dendrimers have seen rapid translation into various biomedical applications. A number of reports have not only demonstrated their clinical utility, but also revealed novel design approaches and strategies based on the elucidation of underlying mechanisms governing their biological interactions. This review focuses on presenting the latest advances in dendrimer design, discussing the current mechanistic understandings, and highlighting recent developments and targeted approaches using dendrimers in drug/gene delivery.


Asunto(s)
Dendrímeros/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Diseño de Fármacos , Humanos
18.
J Control Release ; 191: 115-22, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24837188

RESUMEN

Nanoparticle (NP)-based drug delivery platforms have received a great deal of attention over the past two decades for their potential in targeted cancer therapies. Despite the promises, passive targeting approaches utilizing relatively larger NPs (typically 50-200nm in diameter) allow for passive tumor accumulation, but hinder efficient intratumoral penetration. Conversely, smaller, actively targeted NPs (<20nm in diameter) penetrate well into the tumor mass, but are limited by their rapid systemic elimination. To overcome these limitations, we have designed a multi-scale hybrid NP platform that loads smaller poly(amidoamine) (PAMAM) dendrimers (~5nm in diameter) into larger poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PLA) NPs (~70nm). A biodistribution study in healthy mice revealed that the hybrid NPs circulated longer than free dendrimers and were mostly cleared by macrophages in the liver and spleen, similar to the in vivo behavior of PEG-PLA NPs. When injected intravenously into the BALB/c athymic nude mice bearing folate receptor (FR)-overexpressing KB xenograft, the targeted hybrid NPs encapsulating folate (FA)-targeted dendrimers achieved longer plasma circulation than free dendrimers and higher tumor concentrations than both free dendrimers and the empty PEG-PLA NPs. These results suggest that the hybrid NPs successfully combine the in vivo advantages of dendrimers and polymeric NPs, demonstrating their potential as a new, modular platform for drug delivery.


Asunto(s)
Dendrímeros/química , Portadores de Fármacos , Ácido Fólico/sangre , Lactatos/química , Nanopartículas , Neoplasias/metabolismo , Polietilenglicoles/química , Animales , Línea Celular Tumoral , Química Farmacéutica , Femenino , Ácido Fólico/química , Ácido Fólico/farmacocinética , Transportadores de Ácido Fólico/metabolismo , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Nanomedicina , Tamaño de la Partícula , Tecnología Farmacéutica/métodos , Distribución Tisular
19.
Nanoscale ; 6(5): 2812-20, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24468839

RESUMEN

Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.


Asunto(s)
Dendrímeros/química , Hormona Folículo Estimulante/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dendrímeros/toxicidad , Portadores de Fármacos/química , Femenino , Fluoresceína/química , Hormona Folículo Estimulante/química , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ratones , Ratones Endogámicos BALB C , Nanoestructuras/química , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Ovario/metabolismo , Estructura Terciaria de Proteína , Survivin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...